

SHORT TERM SCIENTIFIC MISSION (STSM) FINAL REPORT

To whom it may concern,

Hereby I present the Scientific Report related to my Short Term Scientific Mission developed, as planned, between the 13th and 24th of March 2016 with the topic:

"Review of the Adaptive Facade database, development of the educational pack draft plan and teaching material WG1"

that I concluded within the COST action TU1403 Adaptive Facades.

The host institution was the Architecture Department of the University of the Basque Country UPV/EHU, the host responsible person was Prof. Arch. José Miguel Rico Martinez, professor and researcher at that University.

I took part in the COST Action 1403 in the framework of the objectives of WG1, and more specifically the mapping of different adaptive technologies, to provide an overview about their performance and to collect and analyse facades and technologies already adopted in practice towards a proper characterization and definition finding.

The main objective carried out in this STSM was to make progress in the tasks of the working group by developing the basis for the educational pack – critically reviewing the existing survey – individuating possible themes and strategies to deepen in the educational pack WG1, and setting up a draft of the teaching material.

I mainly focused on critically reviewing the existing survey on adaptive facades developed by WG1 by taking into account definitions of key concepts, case studies of adaptive components, materials, technologies and building/architectural integration methods towards adaptability. With the help of my host and the other members of the WG1, I re-organised and structured a final draft of the survey and developed a systematic output of the information gathered through the survey into detailed and summarized fact-sheets for each analysed example.

For further information, I attach a sample of the final survey and fact sheets which constitute the base of the further steps which will be taken by WG1 to assemble the teaching material for the WG1 Educational Pack and build up the Adaptive Facades Network database.

The exchange was very productive also because I was able to consistently give my contribution to the WG1's work by integrating into the classification and survey my knowledge concerning unpowered kinetic adaptivity in architecture, or auto-reactivity, which is the object of my Ph.D. Also, I had the chance of benefiting from the expertise and of my host institution by getting to know their working methods, facilities and human resources, developing as well the relations between the School of Architecture of the University of the Basque Country and my home institutions SAPIENZA Università di Roma Facoltà di Architettura, and the Technical University Munich, Faculty of Architecture.

In the following table I describe to what extent I reached the prospected outcomes as defined in the STSM plan:

D.1.1. Report and database with current state-of-the-art adaptive façade materials, systems and new concepts.

D.1.4. Input and contributions to relevant parts of educational pack

D.1.5. Contribution to Industry Workshop

Prospected outcome	Reached outcome
D.1.1. Report and	Fully achieved.
database with current	More specifically, the work carried out consisted of:
state-of-the-art	- set, in agreement with the WG1 members, the basis of the overall
adaptive façade	structure of the survey, dividing the different aspects into parts ranging

materials, systems and new concepts.	from general to specific features; - develop each question in terms of main definition(s) and subsequent subcategories; - testing the validity of the survey by feeding the database with a few examples in each category; - suggest a systematic organization and output of the information gathered through the survey into detailed and summarized fact-sheets for each analysed example. The next steps for the WG1 will be to fill through this survey the database with case-studies and constitute the online Adaptive Facades Network database.	
D.1.4. Input and contributions to relevant parts of educational pack	Draft version a for the educational package WG1, according to the phases 1 – 4 of the edu-pack working structure	Partly achieved, still in progress. The outcome of the STSM defines the themes that could be addressed in the framework of a lecture cycle.
	Basic layout for teaching materials and presentations for all WG members to work in.	Not addressed during the STSM.
	Prepare teaching material and presentation for phase 1 (Data base with definitions)	Partly achieved, still in progress. The survey attached to this report presents the main definitions and a structured base to be further developed and implemented for the student workshops.
D.1.5. Contribution to Industry Workshop	Fully achieved. The attached material developed during the STSM will be a valuable input for an introduction and description of adaptive facades in educational packs and might as well be directly used in the workshops.	

Munich, the 17th of April 2016

frontinated

Arch Sandra Giulia Linnéa Persiani PhD candidate in Sustainable Architecture

SAPIENZA Università di Roma

Facoltà di Architettura | Dipartimento PDTA sandra.persiani@yahoo.it | m. +49 17635361052 **Technische Universität München** Fakultät für Architektur . Professur für Entwerfen und Gebäudehülle Arcisstraße 21 80333 München sandra.persiani@tum.de

Survey: COST TU 1403 WG 1 Database Survey - V7

Page.1.- Survey content and introduction

This survey is created to feed an Adaptive Facade case-study database. This 9 pages survey is structured according to three levels of detail: basic level, building level and detailed level, which is further structured into the following sections:-Detailed description - Metrics- Characterization- Economical aspects- References, pictures and contact dataYou can leave the survey at anytime and continue later (upright button). This is a general form that serves all adaptive facade cases, including research projects still in a lab-phase, mockups, built solutions, products available in the market, etcWe use a three scale approach: Material - Component - Facade system. You can fill this unique survey for any case that fits any of the mentioned scales. For instance you could describe a phase change material, a shading device, a unitized curtain wall system, etc. You'll have to decide which questions are applicable to the case you are describing. If you can't give an answer, just skip the question. At the end you will be asked to enter links to pictures and drawings if available (you can also send them to j.rico@ehu.eus).We follow the definitions stated in "Design for façade adaptability – Towards a unified and systematic characterization"You can access the arcticle in the Cost Action site (http://tu1403.eu/) or by the following link: https://www.dropbox.com/s/4h6tu85sbdx3zfy/Design%20for%20facade%20adaptability%20%28characterization %29.pdf?dl=0

Page.2.- Basic level of information

Definition of adaptive façade product levels:Material: a material can be in different states of refinements such as raw, extruded or coated. Also materials which are inseparable combined, such as bi-metals, belong to his category. Examples: Polymer, Bi-metal, steel, wood, phase change material.Component: a component is an assembly of different set of elements. It forms a complete constructional or functional unit as part of a façade. For example an insulated glass unit but also a window frame including glazing or a sun shading device.Façade-system: a facade (or roof) system is composed of different transparent or opaque structural or technical components. It fulfils all basic technical façade functions such as insulation, rain and wind tightness.Building: the COST Action analyses adaptive facade cases and here information about the building level describes the context in which a facade is placed. In many cases, the performance of adaptive materials, component or facades can only be judged in the building context.

Quest.1.- Adaptive Facade (AF) study-case type:

(* This question is obligatory) (* Tick only one option)

Material Component Facade system

Quest.2.- Case-study name (material/component/façade system), research project-title, building-name (max 26 characters):

(* This question is obligatory)

Respuesta:

Quest.3.- Building location (if applicable)

Location name: : ____

Latitude: : ______

Longitude: : _____

Quest.4.- Year of construction (for built solutions) or date of proposal/invention:

Respuesta:

Quest.5.- Main author / Group

Respuesta:

Quest.6.- Involved parties (more detailed information)

Designer / Inventor / Researcher :	
Structural Engineer :	_
Services Engineer :	
Facade consultant :	
Manufacturer :	
Contractor :	
Building / project owner :	
Other party involved :	

Quest.7.- Keywords defining the case-study:

(* This question is obligatory)

1.:_	 	
2. :		
з. 		
J		
4.:_	 	
5.:		

Page.3.- Building level of information:

Questions in this page mainly focus in built solutions and therefore are not applicable in general to commercial components

of wide application, research projects, lab. mockups, etc.

Quest.8.- Building floor area (if applicable):

(* Tick only one option)

0 - 50 sq.m. 50 - 500 sq.m. 500 - 5.000 sq.m. 5.000 and up sq. m. Otro (Por favor especifique)___

Quest.9.- Building use (if applicable):

Office
Education
Industry

Housing Other (please specify)

Quest.10.- Building status (if applicable):

(* Tick only one option)

New built Refurbished Other (please specify)

Quest.11.- Is adaptivity part of the main architectural design concept of the building? (if applicable)

(* Tick only one option)

Yes No Other (please specify)

Quest.12.- Climate Type (Köppen Climate Classification System, see previous table).For case studies outside Europe, a world map is available at the following website http:// www.eoearth.org/view/article/162263/For cases not applied in specific buildings and locations: which climates do you see the biggest potential to apply this technology?

(* Tick only one option)

Not applicable
All of them
Af
Am
Aw
BWh
BWk
BSh
BSk
Csa
Csb
Cwa
Cwb
Cwc
Cfa
Cfb
Cfc
Dsa
Dsb
Dsc
Dsd
Dwa
Dwb
Dwc
Dwd
Dfa
Dfb
Dfc
Dfd
EI
EF

Quest.13.- Orientation of the facade system / component / material

Ν NE_ E_ SE_ S_{-}

SW_ W_ NW_ All orientation Not Applicable

Page.4.- Detailed level of information

Detailed information is structured into sections:4.1 Detailed description (purpose, classification, working principle).4.2 Metrics4.3 Characterization4.4 Economical aspects4.5 References, pictures and contact dataThe information given is not obligatory, but the databse would benefit a lot from every entry.

Page.5.- 4.1 Detailed description

Quest.14.- Please specify the Technology Readiness Level (applies to all the information submitted): (* Tick only one option)

1 Basic principles observed and reported/ Idea

- 2 Technology concept formulated/Design Proposal
- 3 Technology validated in lab
- 4 Prototype demonstration
- 5 Commercial product/Existing building

Quest.15.- Function / goal / purpose

Thermal comfort_ Visual comfort_ Acoustic comfort_ Energy management (harvesting, storing, supply)_ Mass transfer control (e.g. condensation control)_ Indoor air quality_ Appearance (aesthetic quality)_ Structure performance (fire protection, earthquake)_ Energy generation_ Personal users' control_ Other (durability, accesibility, use of natural resources, etc). Please specify:

Quest.16.- Where does this technology fit in the following classification suggested by COST1403 WG2?

(* Tick only one option)

Standard Curtain Wall (StandCW) Active Transparent Facades (ATF) Switchable Glazing (SG) Phase Change Materials (PCM) Multifunctional Facade Modules (MFM) Biomimetic Facades (BF) Other (please specify)

Quest.17.- Select the type of facade system / component / material.

Unitized Curtain Wall_ Curtain wall (stick)_ Prefabricated Facade Module_ Double Skin Facade_ Ventilated facade_

External skin_ Window frame (e.g. automitically opening)_ Insulated glass unit_

Shading device (roller, louver, blind, shutter, etc) Insulation device(e.g. insulation layer, Vacuum Insulation Unit) Building services unit Energy harvesting device(e.g. photovoltaic element)_ Energy storage device (e.g. trombe wall)_ Air circulation device Natural ventilation device_ Solar tube Green envelope_ Liquid crystals_ Phase Change Materials Polymers_ Alloys Ceramics Wood Salthydrates Hydrocarbures_ Other (please specify)_

Quest.18.- If you are describing a switchable glazing, specify: (* Tick only one option)

Electro-chromic (EC), Liquid crystal, SPD Photo-volta-chromic Independently tunable NIR-VIS EC Thermo- tropic / chromic Photo-chromic Fluidglass Other (please specify)

Quest.19.- If you are describing a shading, please specify:

(* Tick only one option)

Screens / roller shades Blinds with slat angle control Bi-directional transmission control Insulating shutters Shading with dual-axis tracking Other (please specify)

The following two questions are specially applicable to adaptive components or unitized facade-systems but also could be answered for materials produced in standard units:

Quest.20.- Area of the case-study (sq.m.):

Respuesta:

Quest.21.- Added weight (kg/sq.m.) of the case-study:

Respuesta:

The following three questions are specially applicable to adaptive materials but also could be answered for facade-systems or components including adaptive materials that play a key role in their function:

Quest.22.- Material effect - how does the material adapt?

Shape Memory Material_ Bi-material effect_ Electroactive material_ Superabsorbent material_ Phase Change Other (please specify)_

Quest.23.- Type of trigger (INPUT): - In the case of intrinsic operation: What triggers the smart material reaction? - In the case of extrinsic operation: What does the sensor detect in order to run an actuator?For instance, in the Institut du Monde Arabe facade, the trigger is optical.

(* Tick only one option)

Mechanical (e.g. wind load) Thermal (e.g. outdoor air temperature) Electromagnetic (e.g. solar radiation) Optical (e.g. daylight level, glare) Air quality (humidity, CO2 concentration, etc) Building heating/cooling load Occupant's presence Other (please specify)

Quest.24.- Type of actuator (OUTPUT):For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Mechanical Pneumatical Electromagnetic Thermal Chemical Other (please specify)_____

Quest.25.- Explain the working principle of the case-study (short answer: max 500 characters):

(* This question is obligatory)

Quest.26.- Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

Page.6.- 4.2 Metrics and technical requirements

Quest.27.- Intro the value or value-range of the following metrics, if suitable to assess the adaptivity of your case-study:

UV Resistance :	
Light transmittance (%) :	
Solar transmittance (%) :	
Total solar energy transmittance (%) :	
Solar savings fraction (%) :	_
Weight/Density (g/cm2) :	
Solar heat gain factor (%) :	
U-Values (W/m2*K) :	
Noise insulation :	
Fire protection :	
Colour :	
Other :	
Other :	
Other :	
Other :	
Other :	
Emissivity :	

Quest.28.- Energy data based on:

Estimation Detailed simulation Measurement/testing Long-term monitoring Monitoring Post occupancy evaluation Soft landing Other (please specify)

Quest.29.- Which simulation tools were used for the design?

DesignBuilder Ecotect eQuest ESP-r IES VE IDA ICE Radiance TAS TRNSYS Own developed numerical model (give references if available in others section) Trace 700 OpenStudio Sefaira IDF Editor Simergy Honeybee AECOsim SIMEB HAP Revit BPA / Green Building Studio Others (please specify)

Page.7.- 4.3 Characterization:

As mentioned in the introduction we follow the definitions stated in "Design for façade adaptability – Towards a unified and systematic characterization". Refer to it in order to clarify concepts meaning.You can access the arcticle in the Cost Action site (http://tu1403.eu/) or by the following link: https://www.dropbox.com/s/4h6tu85sbdx3zfy/Design%20for%20facade %20adaptability%20%28characterization%29.pdf?dl=0

Quest.30.- Select the control/operation type: (* Tick only one option)

Intrinsic (auto reactive) Extrinsic (requires external controll) Other (please specify)_____

Quest.31.- Explain the control/operation. Short answer (max 500 characters):

(* This question is obligatory)

Quest.32.- Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

Quest.33.- System response time (thick all that apply):

Seconds_ Minutes_ Hours_ Days_ Seasons_ Years_ Other (please specify)_____

Quest.34.- System degree of adaptivity:

(* Tick only one option)

on/off gradual Other (please specify)___

Quest.35.- Degree of spatial adaptation (technology scale). In which scale does the technology trigger the adaptation? For an adaptive coating the scale is in nanometers, for a facade shutter the change occurs in a scale of centimeters/meters.

Nanometers_ Micrometers_ Millimeters_ Centimeters_ Meters_ Other (please specify)

Quest.36.- Level of AF visibility (Reijenga classification):

(* Tick only one option)

1 Not visible, no surface change (heat storage, phase change materials)

2 Visible, no surface change (smart glazing)

3 Visible, surface change (lamellas, rollers, blinds)

4 Visible, size or shape change (shutters, flaps, dynamic facade elements)

5 Visible, location or orientation change Other (please specify)

Page.8.- 4.4 Economical aspects

Quest.37.- Is the system economically viable?

(* Tick only one option)

Yes No Other (please specify)_

Quest.38.- Economic aspects

Cost/m2 :

Yearly cost of maintenance : ____

Quest.39.- Please estimate the cost of the case-study:

(* Tick only one option)

Low (traditional, residential, simple prefabricated, etc) Medium (curtain walls, ventilated facades, etc) High (double skin facades, high tech, etc) Information not available

Quest.40.- System maintenance frequency

(* Tick only one option)

Daily Weekly

Monthly	
Yearly	
Other (please specify)	

Page.9.- References and additional information

-

Quest.41.- References (bibliography, web-sites, etc):

Reference 1: :	
Reference 2: :	
Reference 3: :	
Reference 4: :	
Reference 5: :	

Quest.42.- Provide links to the study-case PICTURES/VIDEOS, their authors and types of license (or send them to j.rico@ehu.eus):

Link to picture/video 1 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright) :
Link to picture/video 2 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):
Link to picture/video 3 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):
Link to picture/video 4 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):
Link to picture/video 5 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):

Quest.43.- Provide a link to the study-case DRAWINGS, their authors and types of license (or send them to j.rico@ehu.eus):

Link to drawing 1 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):
Link to drawing 2 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):
Link to drawing 3 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright) :
Link to drawing 4 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):
Link to drawing 5 :
Caption, description :
Author :
CreativeCommonts/Copyleft/PublicDomain/Copyright):

Quest.44.- Filling person info (this is optional information):

name: :	
company/university: :	
e-mail: :	
WG affiliation (if applicable) :	

Oval C	Cologne Office	S		fn/Ada	DST TU1403 ptive facade network
Sauerbruch Hutt	ton Architekten 2010	Cologne			1
				C	
keywords	automatic vertical shutter; daylight regulation; irregular shape; oval; color in architecture	Adaptivity concept	Yes	Building use	Office
Туре	Facade system	Building status	New built	Building floor	500 - 5.000 sq.m.
T.R.L.	5 Commercial product/Existing	working principle	e of the facade sy	stem / componen	t / material
Function / goal	Thermal comfort_Visual comfort_Appearance (aesthetic quality)_	The folding shutt and automaticall	ters are the sunso y controlled.	creens. They are	made out of colored glass
WG2 classification Type of system	automatic shutter system Curtain wall (stick)_Shading				
	device (roller, louver, blind, shutter, etc)_				
Area (m ²) Weight (kg/m ²) Effect		Operation princi	ole of the facade	system / compon	ent / material
Trigger (input)	Optical (e.g. daylight level, glare)	The louvers are	controlled externa	ally by the system	n measuring the insolation.
Actuator (output)) Mechanical				
Operation type	Extrinsic (requires external controll)				
Response time	Seconds_Minutes_				
Adaptivity Degree of adaptivity Cost/m2 Maintenance	gradual Centimeters_	Level of AF visibility	4 Visible, size or facade elements	s shape change (: s)	shutters, flaps, dynamic
cost/year Cost range	High (double skin facades, high tech, etc)				

Altra Sede Regione Lombardia

Milan

Pei Cobb Freed & Partners, 2010 Caputo Partnership, SDPartners

Regenerable PV with HEMN

Hyung-Jun Koo / material engineering

keywords	photosystem; regeneration ; dye infusion; biomimetic; photovoltaic	Adaptivity concept	Yes	Building use	Energy generation			
Туре	Material	Building status	New built	Building floor				
T.R.L.	3 Technology validated in lab	working principle	of the facade system	stem / component	/ material			
Function / goal	Energy management (harvesting, storing, supply)_	Regenerable Ph Network (HEMN biomimetic micro photovoltaic perf Photosensitive o term energy ope	otovoltaic Devices) is a material innovascular network formance. rganic dye molec rational outputs a	s with Hydrogel-Er ovation for facade for dye infusion fo ules (PoDM) redu	mbedded Microvascular s innovation surfaces with or regenerative ce deterioration of long erformance of photovoltaic			
WG2 classification	Biomimetic Facades (BF)	cells. This biomimetic network of dye infusion gives damage regerneration by chemical compounds of action and reaction have been undertaken by Hyung						
Type of system	Energy harvesting device(e.g. photovoltaic element)_	within self-heal photovoltaic. Vascular networks have been used as regenerative functions for hydrogel photovoltaic devices by photosensitive organic dye infusion, Fig. 1.						
Area (m ²)	n/a							
Weight (kg/m ²)	n/a							
Effect	chemical infusion of organic dye	Operation princip	ole of the facade	system / compone	ent / material			
Trigger (input)	energy enhance performance function of PV	Optimization of r	STING DEVICE	ionality of a photo	voltaic system by			
Actuator (output)	Chemical	photosensitive of to light stress, his	rganic dye moleci gh temperatures f	ules. Organic dyes hat reduce the lor	s are generally susceptible ng-term performance of			
Operation type	photovoltaic of u-FGPV in a closed structure	photovoltaic cells regenerative fun	s. Embedded mic ctionality by the ir	rofluidics within a fusion of chemica	network enables Il regenerative properties			
Response time	depending on dye infusion into network, changes response time of PoDM regeneration	by transport of p hydrogel solar ce	notoactive agents ell of optimum per	formance for electroly	tricity generation.			
Adaptivity	gradual							
Degree of adaptivity	Nanometers_	Level of AF visibility	2 Visible, no sur	face change (sma	rt glazing)			
Cost/m2	-							
Maintenance	-							
cost/year								
Cost range	High (double skin facades, high tech, etc)							

Achim Menges Architect

2012

Centre Pompidou, Paris

keywords	Moisture sensitive; Parametric; Wood; Kinetic; Autoreactive	Adaptivity concept	Yes	Building use
Туре	Component	Building status		Building floor
T.R.L.	4 Prototype demonstration	working principle	of the facade sys	tem / component / material
Function / goal	Appearance (aesthetic quality)_	The thin wooden hygroscopic beha dry and yield moi fluctuations whic	sheets curve (ope avior (ability to tak isture to the atmos h trigger the aniso	ening) and extend (closing) through a e in moisture from the atmosphere when sphere when wet) in response to R.H. tropic characteristics of the materials.
WG2	Biomimetic Facades (BF)			
Type of system	External skin_Wood_			
Area (m²) Weight (kg/m²)	2			
Effect Trigger (input)	Bi-material effect_ Air quality (humidity, CO2	Operation princip The model opens	ble of the facade s and closes in res	ystem / component / material sponse to climate changes with no need for Mere fluctuations in relative humidity
Actuator (output)	Mechanical	trigger the silent itself is the mach	changes of materi ine.	al-innate movement. The material structure
Operation type	Intrinsic (auto reactive)			
Response time	Seconds_Minutes_			
Adaptivity Degree of adaptivity Cost/m2 Maintenance cost/year	gradual Micrometers_Millimeters_	Level of AF visibility	4 Visible, size or facade elements)	shape change (shutters, flaps, dynamic)
Cost range	Information not available			

ATELIER BRÜCKNER GmbH

2000

Hannover Expo

keywords	Pneumatic; Sun shading; ETFE; Cushion; Pattern	Adaptivity concept	Yes	Building use	Exhibition pavillion
Туре	Facade system	Building status	New built	Building floor area	
T.R.L.	5 Commercial product/Existing building	working principle	of the facade sys	stem / component	/ material
Function / goal	Thermal comfort_Visual comfort_Energy management (harvesting, storing, supply)_Mass transfer control (e.g. condensation control)_Appearance (aesthetic quality)	The facade is ma transparent layer and on the outer the outer layer, the When it moves a printed on the su	ade of nylon+ poly inside. A positive layer of the cushi ne printed pattern way from the oute	rurethane cushion /negative pattern ons. When the mi s superimpose an er layer, light filters	is with a flexible is printed on the middle ddle layer overlaps with d shading is provided. s through the patterns
WG2	Biomimetic Facades (BF)	depending on the	e position of the n	niddle layer.	
classification Type of system	External skin_Polymers_				
Area (m²) Weight (kg/m²)					
Effect	Ontical (a.g. daylight layel, glara)	Operation princip	ble of the facade s	system / compone	nt / material
mgger (input)	Oplical (e.g. daylight level, glare)			eu by an exterior	(powered) system.
Actuator (output)	Mechanical				
Operation type	Extrinsic (requires external controll)				
Response time	Minutes_				
Adoptivity	aradual				
Degree of	Centimeters_	Level of AF	3 Visible, surface	e change (lamellas	s, rollers, blinds)
adaptivity		visibility			,
Cost/m2 Maintenance					
cost/year					
Cost range	Medium (curtain walls, ventilated facades, etc)				

Nitinol (NiTi)

keywords	Shape memory; Alloy; Kinetic; Temperature; Reactive	Adaptivity concept	Building use
Type	Material	Ruilding status	Building floor
1,900	Matorial	Building old too	area
T.R.L.	5 Commercial product/Existing building	working principle of the facade	system / component / material
Function / goal	-	Nitinol alloys exhibit shape men	nory effect (SME) and superelasticity (SE).
		Shape memory is the ability to u	undergo deformation at one temperature, and
		temperature". Superelasticity or	ccurs at a narrow temperature range just above
		its transformation temperature;	no heating is necessary to cause the
		undeformed shape to recover, a	and the material exhibits enormous elasticity,
WG2 classification			lai.
Type of system	Alloys_Autoreactive material		
$\Lambda roo (m^2)$			
Weight (kg/m ²)			
Effect	Shape Memory Material_	Operation principle of the facad	e system / component / material
Trigger (input)	Thermal (e.g. outdoor air	Nitinol's unusual properties are	derived from a reversible solid-state phase
Actuator (autaut)	temperature)	transformation known as a mar	tensitic transformation, between two different
Actuator (output)	Mechanica	interpenetrating simple cubic st	ructure referred to as austenite (also known as
Operation type	Intrinsic (auto reactive)	the parent phase). At low tempe more complicated body-centere	eratures, nitinol spontaneously transforms to a
Response time	Seconds Minutes	martensite (daughter phase).	
Adaptivity	aradual		
Degree of	Nanometers	Level of AF 4 Visible size	or shape change (shutters, flaps, dynamic
adaptivity	· · · · · · · · · · · · · · · · · · ·	visibility facade eleme	nts)
Cost/m2			
Maintenance		Detail of NiTi wires	
Cost range			
e sot rango			

Window antenna

Glafo

2014

keywords	Window antenna; Glass; Surface coating; Prototype; Mobile reception	Adaptivity concept		Building use
Туре	Component	Building status		Building floor area
T.R.L.	4 Prototype demonstration	working principle	e of the facade sys	tem / component / material
Function / goal	accesibility	The low-E coatin electrical conduc signals instead.	ig on the glass nor tivity of the coating	mally Shields mobile signals. By using the g it's transformed into an antenna for mobile
WG2 classification	Active Transparent Facades (ATF)			
Type of system	Insulated glass unit_			
Area (m ²) Weight (kg/m ²) Effect Trigger (input)		Operation princi Always functions	ole of the facade s as an antenna	ystem / component / material
Actuator (output)				
Operation type	Intrinsic (auto reactive)			
Response time	Seconds_			
Adaptivity Degree of adaptivity	Millimeters_	Level of AF visibility	2 Visible, no surf	ace change (smart glazing)
Maintenance		Prototype develo	opment	
Cost range	Medium (curtain walls, ventilated facades, etc)			

Arab World Institute Paris

Atelier Jean Nouvel

1987

keywords	Mechanic; Light regulating; Diaphragm; Moucharabieh; Polygon	Adaptivity concept	Yes	Building use	EducationMuseum
Туре	Facade system	Building status	New built	Building floor area	5.000 and up sq. m.
T.R.L.	5 Commercial product/Existing building	working principle	of the facade sys	stem / component	/ material
Function / goal	Visual comfort_Appearance (aesthetic quality)_	This southern fa diaphragms in m adjust their open light levels with t building through	cade is entirely co etal screened by ess / closeness e he desired interior but the day.	omposed of 240 m a glass facade. Th very hour to matc r light level, filterin	otor-controlled camera-like ne devices automatically h the outdoor changing ig light in and out of the
WG2 classification	Standard Curtain Wall (StandCW)				
Type of system	Curtain wall (stick)_Shading device (roller, louver, blind, shutter, etc)				
Area (m ²) Weight (kg/m ²) Effect		Operation princip	ale of the facade of	svetem / compone	int / material
Trigger (input)	Optical (e.g. daylight level, glare)	The institue du n	nonde arabe is an	example for a kin	netic architecture that
Actuator (output)	Mechanical	devices analyze by a more or less	the indoor light cost contralized cont	onditions and adju rol system.	st the hexagonal screens
Operation type	Extrinsic (requires external controll)				
Response time	Seconds_Minutes_				
Adaptivity	gradual				
Degree of adaptivity	Millimeters_Centimeters_	Level of AF visibility	3 Visible, surface	e change (lamella	s, rollers, blinds)
Cost/m2 Maintenance cost/vear		Detail of the sou	thern facade		
Cost range	High (double skin facades, high tech, etc)				

Tesselate

Hoberman Associates + Buro Happold

keywords	Perforated metal; Kinetic; Sunshading; Sliding; Panels	Adaptivity concept	Yes	Building use
Туре	Component	Building status		Building floor
T.R.L.	5 Commercial product/Existing	working principle	of the facade sys	atea stem / component / material
Function / goal	Thermal comfort_Visual comfort_Energy management (harvesting, storing, supply)_Appearance (aesthetic quality)_	Tessellate is a m pattern shifting k another, regulatin	odular framed and inetically, with four ng light and solar (d glazed screen system with perforated r metal perforated panels gliding past one gain, airflow, and privacy.
WG2	Biomimetic Facades (BF)			
Type of system	Shading device (roller, louver, blind, shutter, etc)_			
Area (m ²) Weight (kg/m ²) Effect Trigger (input) Actuator (output)	Electromagnetic (e.g. solar radiation) Mechanical	Operation princip Each Tessellate by a single comp purposes.	ble of the facade s module runs on a puter processor, wh	system / component / material single motor. These modules are controlled hich can be programmed for various
Operation type	Extrinsic (requires external			
Response time	Seconds_Minutes_Hours_			
Adaptivity Degree of adaptivity Cost/m2	gradual Millimeters_Centimeters_	Level of AF visibility	3 Visible, surface	e change (lamellas, rollers, blinds)
Maintenance		Detail of three sta	ages in a Tesselat	e screen
Cost range	Medium (curtain walls, ventilated facades, etc)			

Articulated cloud

10

Ned Kahn

2004

Pittsburgh, USA

Kinetic; Screen; Plastic; Tiles; Art keywords Adaptivity Building use Museum concept Туре Facade system Building status New built Building floor 5.000 and up sq. m. area T.R.L. 5 Commercial product/Existing working principle of the facade system / component / material building Visual comfort Appearance Composed of thousands of translucent, white plastic squares that move in Function / goal the wind, the artwork is intended to suggest that the building has been (aesthetic quality)_ enveloped by a digitized cloud. The optical qualities of the skin change dramatically with the weather and the time of day. The articulated skin is supported by an aluminum space frame so it appears to float in front of the building. WG2 **Biomimetic Facades (BF)** classification Type of system Double Skin Facade External skin Polymers Area (m²) Weight (kg/m²) Effect Operation principle of the facade system / component / material Trigger (input) Mechanical (e.g. wind load) The facade is a dynamic wind sculpture. The fluttering translucent panels it is made of are moved by the wind. Actuator (output) Mechanical Intrinsic (auto reactive) Operation type Response time Seconds_ Adaptivity gradual Degree of Millimeters_Centimeters_ Level of AF 5 Visible, location or orientation change adaptivity visibility Cost/m2 Maintenance Facade of the museum cost/year Cost range Medium (curtain walls, ventilated facades, etc)

Oval Cologne Offices

Sauerbruch Hutton Architekten	2010	Cologne			1
Facade system		Latitude: Longitude:	50°56'N 06°57'E		·
INVOLVED PARTIES Designer / Inventor / Researcher					
Structural Engineer Agne-Wahlen-Daubenbüchel					
Services Engineer Transsolar Energietechnik					
Facade consultant					
Manufacturer					
Contractor					
Building / project owner					
Other party involved					
CASE STUDY INFORMATION Keywords defining the case-study: automatic vertical shutter; daylight regulation	ion; irregular sha	pe; oval; color in arcl	hitecture		
Building floor area (if applicable): 500 - 5.000 sq.m.					
Building use (if applicable): Office					
Building status (if applicable): New built					
Is adaptivity part of the main architectural desi	gn concept of the	building? (if applicable))	Yes	

Orientation of the facade system / component / material

All orientation

Climate type Cfb Please specify the Technology Readiness Level (applies to all the information submitted): **5 Commercial product/Existing building**

Function / goal / purpose

Thermal comfort_Visual comfort_ Appearance (aesthetic quality)_

Where does this technology fit in the following classification suggested by COST1403 WG2? automatic shutter system

Select the type of facade system / component / material. Curtain wall (stick)______Shading device (roller, louver, blind, shutter, etc)____

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify: Blinds with slat angle control

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Optical (e.g. daylight level, glare)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical. Mechanical

Explain the working principle of the case-study (short answer: max 500 characters): The folding shutters are the sunscreens. They are made out of colored glass and automatically controlled.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

The shutters are controlled externally by the system measuring the insolation.

 METRICS

 Intro the value or value-range of the following metrics, if suitable to assess the adaptivity of your case-study:

 UV Resistance
 Light transmittance (%)

 Weight/Density
 Solar transmittance (%)

 (g/cm2)
 (%)

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM
Extrinsic (requires external controll)

Explain the control/operation. Short answer (max 500 characters):

The louvers are controlled extern	nally by the system measuring the insolation.
Detailed explanation of the contr sheet, but only in the detailed sh	ol/operation (unlimited number of characters). This text will not appear in the case study's data eet:
System response time (thick all that apply):	Seconds_Minutes_
System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):	gradual Centimeters_ 4 Visible, size or shape change (shutters, flaps, dynamic facade elements)
ECONOMIC ASPECTS	
Is the system economically viable? Cost/m2	unknown
Yearly cost of maintenance	
System maintenance frequency	Monthly
REFERENCES (bibliography, we	eb sites etc.)
Reference 1: http://www.sc	ientific.net/AST.77.124
Reference 2: R. Ruhmann, Advances in S	A. Seeboth, O. Muehling, D. Loetzsch, "Thermotropic Materials for Adaptive Solar Control", Science and Technology, Vol. 77, pp. 124-131, Sep. 2012
Reference 3:	
Reterence 4:	

Link to http://www.studiomaven.org/images/6/66/Sauerbruch-hutton_Cologne_Oval_Offices.jpg picture/video 1 Caption, description Author studiomaven CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 1 Caption, description

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Marcin Brzezicki company/univer sity: e-mail: marcin.brzezicki@pwr.edu.pl WG affiliation (if applicable) WG1

Altra Sede Regione Lombardia

Pei Cobb Freed & Partners, Caputo Partnership, 2010 SDPartners	Milan	2	
Facade system	Latitude: Longitude:	45°29'12.39"N 9°11'44.92"E	
INVOLVED PARTIES			
Designer / Inventor / Researcher			

Structural Engineer

Services Engineer

Facade consultant

Manufacturer

Contractor

Building / project owner

Other party involved

OAOE	OTUDV		
CASE	SIUDY	INFORMATION	

Keywords defining the case-study:

Building Integrated Photovoltaic; Photovoltaic glass; Curtain wall; Skyscraper; Renewable Energy

Building floor area (if applicable):

Building use (if applicable): Office

Building status (if applicable): New built

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

No

Climate type Cfa Please specify the Technology Readiness Level (applies to all the information submitted):

5 Commercial product/Existing building

Function / goal / purpose

Energy management (harvesting, storing, supply) Energy generation_Use of natural resource

Where does this technology fit in the following classification suggested by COST1403 WG2? Active Transparent Facades (ATF)

Select the type of facade system / component / material. Energy harvesting device(e.g. photovoltaic element)_

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify:

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

- In the case of intrinsic operation: What triggers the smart material reaction?

- In the case of extrinsic operation: What does the sensor detect in order to run an actuator?

For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Explain the working principle of the case-study (short answer: max 500 characters): The BIPV façades of the building aim to produce energy and to reduce at the same time solar heat gain in the hot season.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

 METRICS

 Intro the value or value-range of the following metrics, if suitable to assess the adaptivity of your case-study:

 UV Resistance
 Light transmittance (%)

 Weight/Density
 Solar transmittance (%)

 (g/cm2)
 (%)

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other

_

Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM

Explain the control/operation. Short answer (max 500 characters):

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

System response time (thick all that apply):

System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):

ECONOMIC ASPECTS

Is the system economically viable? Cost/m2 Yes

Yearly cost of maintenance

System maintenance frequency

REFERENCES (bibliography, web sites etc.)

Reference 1:	http://www.regione.lombardia.it/cs/Satellite?c=Page&childpagename=Regione %2FRegioneLayout&cid=1213349250902&p=1213349250902&pagename=RGNWrapper
Reference 2:	

Reference 3: Reference 4: Reference 5:

 $https://it.wikipedia.org/wiki/Palazzo_Lombardia\#/media/File:Grattacielo_Regione_Lombardia.JPG$ Link to picture/video 1 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to http://www.energyglass.eu/pagine/pagina.aspx?ID=Altra_Sede_R001&L=IT picture/video 2 Caption, description EnergyGlass Author CreativeCommo Copyright nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 1 Caption, description

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption, description Author CreativeCommo

nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

```
Caption,
description
Author
CreativeCommo
nts/Copyleft/Pub
licDomain/Copyr
ight)
```

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Enrico Sergio Mazzucchelli company/univer Politecnico di Milano sity: e-mail: enrico.mazzucchelli@polimi.it WG affiliation (if applicable) WG1

Regenerable PV with HEMN

Hyung-Jun Koo / material engineering

Material

INVOLVED PARTIES

Designer / Inventor / Researcher Hyung-Jun Koo, Orlin D Velev

Structural Engineer

-

Services Engineer

-

Facade consultant

-

Manufacturer material technology innovation

Contractor

-

Building / project owner

-

Other party involved

-

S_

CASE STUDY INFORMATION

Keywords defining the case-study:

photosystem; regeneration ; dye infusion; biomimetic; photovoltaic

Building floor area (if applicable):

Building use (if applicable): Energy generation

Building status (if applicable): New built

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

Yes

Climate type All of them 3

Latitude: Longitude: Please specify the Technology Readiness Level (applies to all the information submitted):

3 Technology validated in lab

Function / goal / purpose

Energy management (harvesting, storing, supply)_

Where does this technology fit in the following classification suggested by COST1403 WG2? Biomimetic Facades (BF)

Select the type of facade system / component / material.

Energy harvesting device(e.g. photovoltaic element)_

If you are describing a switchable glazing, specify: aim: photoelectrochemical oxidation to reduce accelerated photo degradation for enhanced photovoltaic functionality

If you are describing a shading, please specify: a material photosystem to reduce damage light stress by electrochemical regeneration

Area of the case-study (sq.m.): n/a
Added weight (kg/sg.m.) of the case-study: n/a

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt? chemical infusion of organic dye u-FGPV

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

energy enhance performance function of PV

Type of actuator (OUTPUT):

For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Chemical

Explain the working principle of the case-study (short answer: max 500 characters):

Regenerable Photovoltaic Devices with Hydrogel-Embedded Microvascular Network (HEMN) is a material innovation for facades innovation surfaces with biomimetic microvascular network for dye infusion for regenerative photovoltaic performance. Photosensitive organic dye molecules (PoDM) reduce deterioration of long term energy operational outputs and enhance the performance of photovoltaic cells. This biomimetic network of dye infusion gives damage regeneration by chemical compounds of action and reaction have been undertaken by Hyung within self-heal photovoltaic. Vascular networks have been used as regenerative functions for hydrogel photovoltaic devices by photosensitive organic dye infusion, Fig. 1.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

For further information on this research paper:

Hyung-Jun K, Orlin DV (2013) Regenerable photovoltaic devices with a hydrogel-embedded microvascular network. Nat Sci Rep 3:2357. doi:10.1038/srep02357)

METRICS

Intro the value or value-range of the following metrics, if suitable to assess the adaptivity of your case-study:UV ResistanceLight transmittance (%)Weight/DensitySolar transmittance (%)(g/cm2)(%)

U-Values (W/m2*K) Noise insulation Fire protection Other	molecule engineering of dye to	Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity
	enhance hydrogel for 60% recovery of light stress in light damaged photosensitive molecules	
Other		Other
Other		Other

Energy data based on:

Monitoring

Which simulation tools were used for the design?

COMSOL Multiphysics package ver 3.5 setting domain and boundary conditions

CONTROL / OPERATION OF THE SYSTEM

photovoltaic of u-FGPV in a closed structure

Explain the control/operation. Short answer (max 500 characters):

SOLAR HARVESTING DEVICE

Optimization of regenerative functionality of a photovoltaic system by photosensitive organic dye molecules. Organic dyes are generally susceptible to light stress, high temperatures that reduce the long-term performance of photovoltaic cells. Embedded microfluidics within a network enables regenerative functionality by the infusion of chemical regenerative properties by transport of photoactive agents dye and electrolytes to create a microfluidic hydrogel solar cell of optimum performance for electricity generation.

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

please refer to paper:

System response time (thick all that apply):	depending on dye infusion into network, changes response time of PoDM regeneration
System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):	gradual Nanometers_ 2 Visible, no surface change (smart glazing)
ECONOMIC ASPECTS	
Is the system economically viable? Cost/m2	lab testing at this moment - prototype under development
Yearly cost of maintenance	-
System maintenance frequency	unknown at this moment
REFERENCES (bibliography, web	sites etc.)
Reference 1: Hyung-Jun K, O network. Nat Sc	rlin DV (2013) Regenerable photovoltaic devices with a hydrogel-embedded microvascular i Rep 3:2357. doi:10.1038/srep02357
Reference 2:	

Reference 3: Reference 4:
Link to picture/video 1 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 1

Caption, description

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

```
Caption,
description
Author
CreativeCommo
nts/Copyleft/Pub
licDomain/Copyr
ight)
```

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Mark Alston company/univer sity: e-mail: m.e.alston@salford.ac.uk WG affiliation (if applicable) WG1

Hygroscope

Achim Menges Architect	2012	Centre Pompid	ou, Paris	4
Component		Latitude: Longitude:	48.8612 2.3533	

INVOLVED PARTIES

Designer / Inventor / Researcher

Achim Menges Architect, Frankfurt Prof. Achim Menges, Steffen Reichert, Boyan Mihaylov (Project Development, Design Development)

Structural Engineer

Institute for Computational Design, University of Stuttgart Prof. Achim Menges, Steffen Reichert, Nicola Burggraf, Tobias Schwinn with Claudio Calandri, Nicola Haberbosch, Oliver Krieg, Marielle Neuser, Viktoriya Nikolova, Paul Schmidt (Design Development, Scientific Development, Robotic Fabrication, Assembly)

Services Engineer

Facade consultant

Manufacturer

Contractor

Building / project owner Centre Pompidou Paris, permanent collection

Other party involved

Transsolar Climate Engineering, Stuttgart Thomas Auer, Daniel Pianka (Climate Engineering)

CASE STUDY INFORMATION

Keywords defining the case-study:

Moisture sensitive; Parametric; Wood; Kinetic; Autoreactive

Building floor area (if applicable):

Building use (if applicable):

Building status (if applicable):

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

Yes

All orientation

Climate type

Please specify the Technology Readiness Level (applies to all the information submitted): **4 Prototype demonstration**

Function / goal / purpose

Appearance (aesthetic quality)_

Where does this technology fit in the following classification suggested by COST1403 WG2? Biomimetic Facades (BF)

Select the type of facade system / component / material.

External skin_ Wood_

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify:

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt? Bi-material effect_

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

2

Air quality (humidity, CO2 concentration, etc)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Mechanical

Explain the working principle of the case-study (short answer: max 500 characters):

The thin wooden sheets curve (opening) and extend (closing) through a hygroscopic behavior (ability to take in moisture from the atmosphere when dry and yield moisture to the atmosphere when wet) in response to R.H. fluctuations which trigger the anisotropic characteristics of the materials.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM

Intrinsic (auto reactive)

Explain the control/operation. Short answer (max 500 characters):

The model opens and closes in response to climate changes with no need for any technical equipment or energy. Mere fluctuations in relative humidity trigger the silent changes of material-innate movement. The material structure itself is the machine.

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

System response time (thick all that apply):

Seconds_Minutes_

System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification): gradual Micrometers_Millimeters_ 4 Visible, size or shape change (shutters, flaps, dynamic facade elements)

ECONOMIC ASPECTS

Is the system economically viable? Cost/m2 Yearly cost of maintenance

System maintenance frequency

REFERENCES (bibliography, web sites etc.)

Reference 1: http://www.achimmenges.net/?p=5083

- Reference 2: http://icd.uni-stuttgart.de/?p=7291
- Reference 3: https://www.centrepompidou.fr/cpv/resource/c7GpBeA/rb964z
- Reference 4: http://www.biomimetic-architecture.com/2012/hygroscope-centre-pompidou-paris/

Link to picture/video 1 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 1

Caption, description

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption,

description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Sandra Persiani company/univer sity: e-mail: sandra.persiani@tum.de WG affiliation (if in contact with WG1 applicable)

Cyclebowl

ATELIER BRÜCKNER GmbH	2000	Hannover Ex	ро	5
Facade system		Latitude: Longitude:	52.3205837 9.8146405	

INVOLVED PARTIES

Designer / Inventor / Researcher ATELIER BRÜCKNER GmbH

Structural Engineer

Baustatik Relling, IPL Ingenieurplanung Leichtbau GmbH, TL ingenieure für tragwerk und leichtbau gmbh

Services Engineer

Arup Ingenieure

Facade consultant Arup Ingenieure

Manufacturer Foiltec GmbH

Contractor

Building / project owner Duales System Deutschland AG

Other party involved

CASE STUDY INFORMATION

Keywords defining the case-study: Pneumatic; Sun shading; ETFE; Cushion; Pattern

Building floor area (if applicable):

Building use (if applicable): Exhibition pavillion

Building status (if applicable): New built

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

Yes

Climate type Cfb

SE_S_SW_

Please specify the Technology Readiness Level (applies to all the information submitted):

5 Commercial product/Existing building

Function / goal / purpose

Thermal comfort_Visual comfort_ Energy management (harvesting, storing, supply)_Mass transfer control (e.g. condensation control)_ Appearance (aesthetic quality)_

Where does this technology fit in the following classification suggested by COST1403 WG2? Biomimetic Facades (BF)

Select the type of facade system / component / material.

External skin_ Polymers_

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify: Screens / roller shades

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Optical (e.g. daylight level, glare)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Mechanical

Explain the working principle of the case-study (short answer: max 500 characters):

The facade is made of nylon+ polyurethane cushions with a flexible transparent layer inside. A positive/negative pattern is printed on the middle and on the outer layer of the cushions. When the middle layer overlaps with the outer layer, the printed patterns superimpose and shading is provided. When it moves away from the outer layer, light filters through the patterns printed on the surfaces. Intermediate ranges of shading are possible depending on the position of the middle layer.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other

Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM
Extrinsic (requires external controll)
Explain the control/operation. Short answer (max 500 characters): Cushions are mechanically activated by an exterior (powered) system.

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

3 Visible, surface change (lamellas, rollers, blinds)

System response time (thick all Minutes_ that apply):

gradual

Yes

Centimeters_

System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):

ECONOMIC ASPECTS Is the system economically viable?

Cost/m2 Yearly cost of maintenance

System maintenance frequency

REFERENCES (bibliography, web sites etc.)
Reference 1:	http://www.atelier-brueckner.de/en/projects/cyclebowl
Reference 2:	http://www.architetturatessile.polimi.it/membrane_scocche/campi_mem/1B_edificio_tessile_t/2000_Cycle Blowl_p/2000_CycleBlowl_P.htm
Reference 3: Reference 4:	http://www.vector-foiltec.com/projects/duales-system-expo-2000-hannover/

Link to picture/video 1 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 1

Caption, description

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption,

description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Sandra Persiani company/univer sity: e-mail: sandra.persiani@tum.de WG affiliation (if in contact with WG1 applicable)

Nitinol (NiTi)

Material	Latitude: Longitude:	6
INVOLVED PARTIES		
Designer / Inventor / Researcher		
Structural Engineer		

Services Engineer

Facade consultant

Manufacturer

Contractor

Building / project owner

Other party involved

CASE STUDY INFORMATION

Keywords defining the case-study:

Shape memory; Alloy; Kinetic; Temperature; Reactive

Building floor area (if applicable):

Building use (if applicable):

Building status (if applicable):

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

Climate type

Please specify the Technology Readiness Level (applies to all the information submitted): **5 Commercial product/Existing building**

Function / goal / purpose

Where does this technology fit in the following classification suggested by COST1403 WG2?

Select the type of facade system / component / material.

Alloys_ Autoreactive material

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify:

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

|--|

How does the material adapt? Shape Memory Material_

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Thermal (e.g. outdoor air temperature)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Mechanical

Explain the working principle of the case-study (short answer: max 500 characters):

Nitinol alloys exhibit shape memory effect (SME) and superelasticity (SE). Shape memory is the ability to undergo deformation at one temperature, and recover its original undeformed shape upon heating above its "transformation temperature". Superelasticity occurs at a narrow temperature range just above its transformation temperature; no heating is necessary to cause the undeformed shape to recover, and the material exhibits enormous elasticity, 10-30 times that of ordinary metal.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other Hysterese 30/40°C Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

OtherCycles >10 MillionsOtherOtherBiocompatibility goodOther

Energy data based on:

Measurement/testing

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM

Intrinsic (auto reactive)

Explain the control/operation. Short answer (max 500 characters):

Nitinol's unusual properties are derived from a reversible solid-state phase transformation known as a martensitic transformation, between two different martensite crystal phases. At high temperatures, nitinol assumes an interpenetrating simple cubic structure referred to as austenite (also known as the parent phase). At low temperatures, nitinol spontaneously transforms to a more complicated body-centered tetragonal crystal structure known as martensite (daughter phase).

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

System response time (thick all that apply):

Seconds_Minutes_

System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification): gradual Nanometers_ 4 Visible, size or shape change (shutters, flaps, dynamic facade elements)

ECONOMIC ASPECTS

Is the system economically viable? Cost/m2 Yearly cost of maintenance

System maintenance frequency

REFERENCES	(bibliography, web sites etc.)
Reference 1:	https://nitinol.com

- Reference 2: http://www.adaptronik.fraunhofer.de/
- Reference 3: http://www.rtm-medizintechnik.de/
- Reference 4:

Link to picture/video 1	http://www.g-rau.de/en/products/actuators-made-of-shape-memory-alloys.html
Caption, description	Detail of NiTi wires
Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	G.RAU GmbH & Co
Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to drawing 1	
Caption, description	

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption,

description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Sandra Persiani company/univer sity: e-mail: sandra.persiani@tum.de WG affiliation (if in contact with WG1 applicable)

Window antenna

Glafo	2014		7
Component		Latitude: Longitude:	
INVOLVED PARTIES Designer / Inventor / Researcher Glafo			
Structural Engineer			
Services Engineer			
Facade consultant			
Manufacturer Inwido			
Contractor			
Building / project owner			
Other party involved			

CASE STUDY INFORMATION

Keywords defining the case-study:

Window antenna; Glass; Surface coating; Prototype; Mobile reception

Building floor area (if applicable):

Building use (if applicable):

Building status (if applicable):

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

All orientation

Climate type All of them Please specify the Technology Readiness Level (applies to all the information submitted): **4 Prototype demonstration**

Function / goal / purpose

accesibility

Where does this technology fit in the following classification suggested by COST1403 WG2? Active Transparent Facades (ATF)

Select the type of facade system / component / material. Insulated glass unit

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify:

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

- In the case of intrinsic operation: What triggers the smart material reaction?

- In the case of extrinsic operation: What does the sensor detect in order to run an actuator?

For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Explain the working principle of the case-study (short answer: max 500 characters):

The low-E coating on the glass normally Shields mobile signals. By using the electrical conductivity of the coating it's transformed into an antenna for mobile signals instead.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM

Intrinsic (auto reactive)

Explain the control/operation. Short answer (max 500 characters): Always functions as an antenna

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

System response time (thick all that apply):

Seconds_

System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):

Millimeters_ 2 Visible, no surface change (smart glazing)

ECONOMIC ASPECTS Is the system economically viable? Cost/m2 Yearly cost of maintenance System maintenance frequency Yearly

REFERENCES (bibliography, web sites etc.)

Reference 1:	Adaptive facade network - Europe, page 63 (http://tu1403.eu/?page_id=209)
Reference 2:	http://www.glafo.se/projektinformation/13-2/3P00015E2A.htm

Reference 3: Reference 4:

Link to picture/video 1	http://www.glafo.se/projektinformation/13-2/3P00015S2A.htm			
Caption, description	Prototype development			
Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	Mikael Ludvigsson Glafo			
Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)				
Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)				
Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)				
Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)				
Link to drawing 1				
Caption, description				

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 5 Caption, description

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Jerry Eriksson company/univer Glafo sity: e-mail: jerry.eriksson@glafo.se WG affiliation (if applicable) WG1

Arab World Institute

Atelier Jean Nouvel	1987	Paris		Q
Facade system		Latitude: Longitude:	48.848926 2.357231	0
INVOLVED PARTIES Designer / Inventor / Researcher Jean NOUVEL, Gilbert LEZENES, Pierre SORIA, A	rchitecture Studio)		
Structural Engineer				
Services Engineer				
Facade consultant				
Manufacturer				
Contractor				
Building / project owner Institut du monde arabe, Scarif (owner's representa	tive)			
Other party involved				
CASE STUDY INFORMATION				
Mechanic; Light regulating; Diaphragm; Moucha	arabieh; Polygon	I		
Building floor area (if applicable):				

 $5.000 \mbox{ and } up \mbox{ sq. m.}$

Building use (if applicable): Education Museum

Building status (if applicable): New built

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material SE_S_SW_

Yes

Climate type

Cfb

Please specify the Technology Readiness Level (applies to all the information submitted): **5 Commercial product/Existing building**

Function / goal / purpose

Visual comfort_ Appearance (aesthetic quality)_

Where does this technology fit in the following classification suggested by COST1403 WG2? Standard Curtain Wall (StandCW)

Select the type of facade system / component / material. Curtain wall (stick)______Shading device (roller, louver, blind, shutter, etc)___

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify: shutter diaphragms

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Optical (e.g. daylight level, glare)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical.

Mechanical

Explain the working principle of the case-study (short answer: max 500 characters):

This southern facade is entirely composed of 240 motor-controlled camera-like diaphragms in metal screened by a glass facade. The devices automatically adjust their openess / closeness every hour to match the outdoor changing light levels with the desired interior light level, filtering light in and out of the building throughout the day.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM

Extrinsic (requires external controll)

Explain the contr The institue du n of sensor-brain d system.	rol/operation. Sho nonde arabe is an levices analyze th	rt answer (max 500 characters): example for a kinetic architecture that depends on mechanicals movements. A complex system e indoor light conditions and adjust the hexagonal screens by a more or less centralized control
Detailed explana sheet, but only ir	tion of the control n the detailed she	/operation (unlimited number of characters). This text will not appear in the case study's data et:
System response that apply):	e time (thick all	Seconds_Minutes_
System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):		gradual Millimeters_Centimeters_ 3 Visible, surface change (lamellas, rollers, blinds)
ECONOMIC ASF	PECTS	
Is the system eco viable? Cost/m2	onomically	No, it is known for its high building/maintenance costs and mechanical failure
Yearly cost of ma	aintenance	
System maintena	ance frequency	Not available
REFERENCES (bibliography, web	sites etc.)
Reference 1:	http://www.jean	nouvel.com/en/desktop/home/#/en/desktop/projet/paris-france-arab-world-institut1
Reference 2:	http://www.ima	rabe.org/architecture-institut-du-monde-arabe
Reference 3: Reference 4:	http://www.akd Moloney, Jules	n.org/publications/akaa/1989_138.pdf . Designing Kinetics for Architectural Facades, State Change, Routledge, New York, 2011.

Reference 5:	Khoo, Chin Koi; Salim, Flora; Burry, Jane. Designing Architectural Morphing Skins with Elastic Modular Systems, RMIT University,Spatial Information Architecture Laboratory (SIAL), international journal of architectural computing, issue 04, volume 09, p. 397- 419.
Link to picture/video 1 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	https://www.flickr.com/photos/joevare/3949286058/ Detail of the southern facade "joevare" Free for sharing, even commercial use
Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	https://www.flickr.com/photos/loran/3373246658/ Detail of the Moucharabieh "loran" Free for sharing, even commercial use
Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	https://www.flickr.com/photos/bluguia_pablo/2829138470/ Detail of the south facade with open and closed diaphragms "Pablo" Free for sharing and adapting, even commercial use
Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	https://www.flickr.com/photos/claveirole/7977235614/ Southern facade of the IMA. "Mon Œil" Free for sharing and adapting, even commercial use
Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 1 Caption,	https://www.flickr.com/photos/sergemelki/3389136542/ Detail of the diaphragm's mechanisms Serge Melki Free for sharing and adapting, even commercial use
description	

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption,

description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Sandra Persiani company/univer sity: e-mail: sandra.persiani@tum.de WG affiliation (if in contact with WG1 applicable)

Tesselate

Component

INVOLVED PARTIES

Designer / Inventor / Researcher Hoberman Associates + Buro Happold

Structural Engineer

Services Engineer

Facade consultant

Manufacturer Zahner + Adaptive Building Initiative (ABI)

Contractor

Building / project owner Zahner + Adaptive Building Initiative (ABI)

Other party involved

CASE STUDY INFORMATION

Keywords defining the case-study: Perforated metal; Kinetic; Sunshading; Sliding; Panels

Building floor area (if applicable):

Building use (if applicable):

Building status (if applicable):

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material E_SE_S_SW_W_

Climate type

Adaptive facade network WG 1, Database of Adaptive Facades

Longitude:

9

Latitude:

Yes

Please specify the Technology Readiness Level (applies to all the information submitted):

5 Commercial product/Existing building

Function / goal / purpose

Thermal comfort_Visual comfort_ Energy management (harvesting, storing, supply)_ Appearance (aesthetic quality)_

Where does this technology fit in the following classification suggested by COST1403 WG2? Biomimetic Facades (BF)

Select the type of facade system / component / material. Shading device (roller, louver, blind, shutter, etc)_

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify: Screens / roller shades

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Electromagnetic (e.g. solar radiation)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical. Mechanical

Explain the working principle of the case-study (short answer: max 500 characters):

Tessellate is a modular framed and glazed screen system with perforated pattern shifting kinetically, with four metal perforated panels gliding past one another, regulating light and solar gain, airflow, and privacy.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

CONTROL / OPERATION OF THE SYSTEM		
Extrinsic (requi	ires external con	troll)
Explain the cont Each Tessellate programmed for	rol/operation. Sho module runs on a various purposes	rt answer (max 500 characters): single motor. These modules are controlled by a single computer processor, which can be
Detailed explana sheet, but only in	ation of the control n the detailed she	/operation (unlimited number of characters). This text will not appear in the case study's data et:
System respons that apply):	e time (thick all	Seconds_Minutes_Hours_
System degree of adaptivity: Degree of spatial adaptation Level of AF visibility (Reijenga classification):		gradual Millimeters_Centimeters_ 3 Visible, surface change (lamellas, rollers, blinds)
ECONOMIC AS	PECTS	
Is the system ec viable? Cost/m2 Yearly cost of ma	conomically aintenance	Yes
System mainten	ance frequency	
REFERENCES Reference 1:	(bibliography, web http://www.azal	ner.com/tessellate.cfm
Reference 2:	http://www.hob	erman.com/portfolio/simonscenter.php?projectname=Simons+Center
Reference 3: Reference 4:	http://www.azał	nner.com/portfolio/stony-brook

Link to picture/video 1	http://www.azahner.com/images/tessellate-unveiling.jpg
Caption, description	Detail of three stages in a Tesselate screen
Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	Zahner
Link to picture/video 2 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to picture/video 3 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	
Link to drawing 1	
Caption, description	

Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption,

description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Sandra Persiani company/univer sity: e-mail: sandra.persiani@tum.de WG affiliation (if in contact with WG1 applicable)

Articulated cloud

Ned Kahn	2004	Pittsburgh, U	SA	10
Facade system		Latitude: Longitude:	40.7683987 -80.0070042	10
INVOLVED PARTIES Designer / Inventor / Researcher Ned Kahn + Koning Eizenberg Architecture				
Structural Engineer				
Services Engineer				
Facade consultant				
Manufacturer				
Contractor				
Building / project owner Childrens' museum Pittsburgh				
Other party involved				
CASE STUDY INFORMATION Keywords defining the case-study: Kinetic; Screen; Plastic; Tiles; Art	-			-
Building floor area (if applicable): 5.000 and up sq. m.				

Building use (if applicable): Museum

Building status (if applicable): New built

Is adaptivity part of the main architectural design concept of the building? (if applicable)

Orientation of the facade system / component / material

All orientation

Climate type Dfb Please specify the Technology Readiness Level (applies to all the information submitted): **5 Commercial product/Existing building**

Function / goal / purpose

Visual comfort_ Appearance (aesthetic quality)_

Where does this technology fit in the following classification suggested by COST1403 WG2? Biomimetic Facades (BF)

Select the type of facade system / component / material. Double Skin Facade_External skin_ Polymers_

If you are describing a switchable glazing, specify:

If you are describing a shading, please specify: Screens / roller shades

Area of the case-study (sq.m.):

Added weight (kg/sq.m.) of the case-study:

MATERIAL ADAPTATION AND WORKING EFFECTS

How does the material adapt?

Type of trigger (INPUT):

In the case of intrinsic operation: What triggers the smart material reaction?
In the case of extrinsic operation: What does the sensor detect in order to run an actuator?
For instance, in the Institut du Monde Arabe facade, the trigger is optical.

Mechanical (e.g. wind load)

Type of actuator (OUTPUT): For instance in the Institut du Monde Arabe facade the actuator output is Mechanical. Mechanical

Meenanical

Explain the working principle of the case-study (short answer: max 500 characters):

Composed of thousands of translucent, white plastic squares that move in the wind, the artwork is intended to suggest that the building has been enveloped by a digitized cloud. The optical qualities of the skin change dramatically with the weather and the time of day. The articulated skin is supported by an aluminum space frame so it appears to float in front of the building.

Detailed explanation of the working principle (unlimited number of characters). This text will not appear in the case study's summarized data sheet, but only in the detailed one:

U-Values (W/m2*K) Noise insulation Fire protection Other Total solar energy transmittance (%) Solar savings fraction (%) Solar heat gain factor (%) Emissivity

Other Other Other Other

Energy data based on:

Which simulation tools were used for the design?

	OVOTEM
UPERALIUN	SYSTEM

Intrinsic (auto reactive)

Explain the control/operation. Short answer (max 500 characters): The facade is a dynamic wind sculpture. The fluttering translucent panels it is made of are moved by the wind.

Detailed explanation of the control/operation (unlimited number of characters). This text will not appear in the case study's data sheet, but only in the detailed sheet:

System response time (thick all **Se** that apply):

Seconds_

System degree of adaptivity:gradualDegree of spatial adaptationMillimeters_Centimeters_Level of AF visibility (Reijenga5 Visible, location or orientation changeclassification):100 millimeters_

ECONOMIC ASE	PECTS
Is the system ecviable?	onomically Yes
Cost/m2	
Yearly cost of ma	aintenance
System maintena	ance frequency
REFERENCES (bibliography, web sites etc.)
Reference 1:	http://nedkahn.com/portfolio/articulated-cloud/
Reference 2:	http://www.kearch.com/work/childrens-museum-of-pittsburgh/
Reference 3:	http://architizer.com/projects/childrens-museum-of-pittsburgh/

Reference 4: https://www.youtube.com/watch?v=nvkNdlKVP2Y

Link to picture/video 1 Caption	http://architizer.com/projects/childrens-museum-of-pittsburgh/media/175114/		
description	Architizor		
CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)			
Link to picture/video 2	https://www.flickr.com/photos/archidose/113136244/		
Caption,	Facade of the museum		
Author	John Hill		
CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	All rights reserved		
Link to	http://architizer.com/projects/childrens-museum-of-pittsburgh/media/171128/		
Caption, description	Detail of the facade		
Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)	Architizer		
Link to picture/video 4 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)			
Link to picture/video 5 Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)			
Link to drawing 1			
Caption, description			
Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight) Link to drawing 2 Caption,

description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 3

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 4

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

Link to drawing 5

Caption, description Author CreativeCommo nts/Copyleft/Pub licDomain/Copyr ight)

AUTHOR OF THE SHEET INFO

name: Sandra Persiani company/univer sity: e-mail: sandra.persiani@tum.de WG affiliation (if in contact with WG1 applicable)