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1. Introduction / Objectives

In the last few years, technological developments of the glass industry have increased the use of glass
with load bearing purposes. Glass brittle behaviour and its low tensile strength is being overcome by
different approaches: the first and the most common one is making use of the tempering and lamination
process by introducing high performance interlayers in laminated glass sheets to improve the structural
behaviour of glass; the most recent is the development of adhesive connections to achieve an efficient
composite behaviour between glass and the supporting elements or to combine glass with ductile
materials in order to achieve an extra level of structural redundancy. The current work is within the
framework of the latter approach.

In contemporary Architecture it is possible to notice a wide use of structural glass in fagades where
glass panels and fins interact with steel substructures, metal frameworks and other structural
components through adhesive joints and mechanical connectors. The adhesive connections are gaining
popularity because of their assembling potential, since an efficient composite behaviour between glass
and the supporting elements may be achieved since it ensures a more uniform load transfer, unlike the
bolted connections that weaken the glass near the boltholes. So, as expected, the load bearing
characteristics of the fagade significantly depend on the composite behaviour of the system, and
subsequently, on the adhesive performance. Thus, it is of the utmost important to be able to accurately
characterize it. Nevertheless, this task is not so straightforward for two main reasons: on one hand, the
available commercial information about the behaviour of high performance adhesives for structural
applications is not as complete as needed, especially if a nonlinear analysis is envisaged; on the other
hand, the numerical modelling of non-rigid structural adhesives that are rubber-like materials, require the
implementation of hyperelastic rheological models. The choice of the appropriate model in a specific
problem requires the necessary calibration of its corresponding parameters, which should ideally be
established from dedicated and tailored experimental tests.

The main objective of the proposed STSM addresses this topic and consists in the characterization of
the behaviour of structural adhesives of common use and the selection of the appropriate model to deal
with it in the Abaqus software. This STSM goal is in line with the COST Action TU1403 objectives, and
specifically with the activities of its sub-group “Structural Glass”.

It is intended to develop a Finite Element model in order to simulate the mechanical behaviour of the
adopted polyurethane, under uniaxial tension and shear. Specific small-scale experiments have been
performed on adhesive specimens under uniaxial tension and shear independently at the laboratories of
the University of Coimbra before the Short Term Scientific Mission [12]. Their results will be used for

choosing the most appropriate hyperelastic model and for establishing their corresponding parameters.



2. State of the art — Adhesives

Nowadays, there are many adhesives produced by different manufacturers, which can be potentially

used for steel - glass connections. Most often used adhesives can be divided according to their modulus of

elasticity and shear modulus into flexible-elastic (i.e. silicones, modified silicones and polyurethanes) and

rigid (i.e. epoxy resin, acrylates) [4].
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Figure 1 — Comparison of different adhesive types: S-silicone; PU — polyurethane; A-Acrylate [4]

Adhesive Type

General Properties

Silicones

Low strength and stiffness;

High durability and resistance against moisture and
UV-radiation;

Hyperelastic material behaviour;

Polyurethanes

Medium strength and stiffness;
Low resistance against UV -radiation;
Hyperelastic material behaviour;

Acrylates

Generally high shear strength and small optimal
thickness;

Generally low resistance against moisture;
Visco-plastic material behaviour;

Epoxies

High strength and stiffness but brittle;
Small optimal thickness;
Linear elastic material behaviour;

Table 1 — Different adhesive types and general properties (adapted from [16])

The selection of the most suitable adhesive is not straightforward, in the sense that the bonded

joint must be rigid enough to provide an optimal structural interaction between the two materials for

maximizing stiffness and resistance, but, on the other hand, it has to be flexible enough to redistribute the

stress peaks in critical points and to mitigate the effects of different temperature elongation of steel and

glass. Besides structural aspects, other factors have to be taken in account when selecting an adhesive,

like the resistance to temperature, UV or even the colour. Finally, the thickness of the adhesive is also



conditioned by the geometrical imperfections of the surfaces to be bonded since these must be

completely filled so that no voids are created.

In the scope of the INNOGLAST project [4], after the selection of some adhesives, in order to
estimate some mechanical properties like the elastic modulus and the Poisson's ratio, uniaxial tension
tests were performed in small-scale test specimens. The obtained stress-strain curves were not enough to
characterize the adhesive due to the fact that, in the majority of the applications, the adhesive layer is
subjected to shear. In order to have a complete knowledge of the adhesive behaviour, new tests were
performed. The Innoglast final report made reference to four different test setups, where only two of

them are standardized, see Table 2.

Single lap
shear test - =

(EN 1465 e
EN 14869-2)

Upper
plunger

Block shear
test
(EN ISO 13445)

Push out
shear test

Steel-glass
shear
connection
test

Table 2 - Tests performed during the Innoglast project to characterize the shear behaviour of the adhesives [7];

Finite Element Analysis is widely used in the design of structures and sub-components. Suitable material
models and accurate material test data are required to achieve accurate predictions of the adhesive
behaviour. The majority of the adhesives cannot be accurately modelled using conventional elastic-plastic
material models since they can develop very large strains under small stress states. These materials need
more complex rheological models, like hyperelastic models. In order to accurately model hyperelastic
materials under multi-axial states of stress, test data are required under conditions of plane stress

(uniaxial tension), plane strain (planar tension) and equi-biaxial stress (equibiaxial tension) [1,3,17].



3. Case study - Hybrid steel-glass beams

The novel concept of hybrid steel-glass beams consists in using an adhesive bonding to assemble steel
flanges to a glass web in order to increase the load carrying capacity, lateral stability, ductility and to
achieve redundancy. The polyurethane Sikaforce 7710 L100 + 7010 was the selected adhesive to make the
adhesive bond. This subject is currently being studied at University of Coimbra. The adhesive will act as a
semi-rigid connector between steel and glass so, in terms of analytical or numerical modelling, it is

essential an accurate simulation of its behaviour.

4. Experimental tests

4.1.Uniaxial tension test

The test specimens were prepared and cut in a dumbbell shaped form according to the ASTM D883
standard [7]. A 3.8mm/min rate was considered until fracture occurred. The geometry of the specimen is
shown in the following figure. More details about the experimental setup and the test procedure can be

found in [7]. Figure 3 illustrates the nonlinear behaviour of the adhesive.
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Table 1: Uniaxial tension test results.

Specimen a, [MPa] &y [%] oy [MPa] & [%] Secant Modulus [MPa] Poisson
Coefficient
1 5,682 17,56 5,441 19,72 32 0,34
2 5,104 20,00 4,891 22,18 26 0,25
3 5,020 18,58 4,339 20,48 27 0,29
Average 5,268 18,71 4,891 20,79 28,30 0,29
5. FEM

Since the Uniaxial tensile tests have showed strains up to 20%, in order to simulate the material
properties a large displacement theory should be considered. So, to accurately model the current
adhesive, a hyperelastic rheological law should be taken into account because this type of constitutive
laws are used to model materials that respond elastically when subjected to very large strains. A
hyperelastic material is still an elastic material, which means it returns to its original shape after the forces
have been removed. It is also Cauchy-elastic, which means that the stress is determined by the current
state of deformation and not history or path of deformation [11]. The difference between linear elastic
and a hyperelastic material is the fact that, in the second one, the stress-strain relation derives from a
strain energy density function and not a constant factor.

The concept of a strain energy function could be described with the example of a non-linear elastic

bar [8].

1
T

Figure 4 — non-linear elastic bar [8]

In order to analyse hyperelastic materials the conventional strain (g) is often replaced by the so-called
stretch (A), which is defined by a quotient between the current and the original length:
, =1+, ly+u

A:—: = = 1
o Io L T

The strain energy density is defined as a function, W(A), describing the strain energy density per
undeformed volume of the bar. The total strain energy, U, is thus expressed by multiplying W(A) with the
undeformed volume:

U= Al,WQ)



The incremental work done by the external force, F, should be equal to the increment in total strain
energy. Hence, the energy balance is stated as:

Fdu =dU
The increment in total strain energy can be expressed by the use of W(A):

dw ()

dU = Aly—

di

The displacement increment can also be written in terms of stretch by using:

ly+u
A= "l su=A-11,
0

Differentiating u gives:

du = l,dA
Inserting them into the energy balance equation yields
FlydA = Alowdl & E = awt) S Opom = d—W
di A di da

Based on this one-dimensional example, it is demonstrated that the stress can be obtained directly from
the strain energy function. In a multi-axial case, the stresses are found in a similar manner from the strain
energy density function. In that situation, the strain measured used is the left Cauchy-Green deformation
tensor, B. A general assumption is that W depends on all of the components of the strain measure, giving:
W =W(B)
However, the state of deformation is fully determined by the principal stretches and the principal
directions (n). In an isotropic material the three principal stretches are independent of the principal
directions and consequently the strain energy density function can be written
W =W, A, A5,04,05,03) = WAL, A5, 23)
In order to obtain the principal stretches it is necessary to find the roots of the characteristic polynomial
of B. Since it is easier to obtain the coefficients of the characteristic polynomial, instead of using the
principal stretches we could therefore express W as function of the strain invariants, where J is the
volume ratio.
w=w(,l,13)
I =tr(B) = M2+ 0,7 4+ A7
L= %(tr(B)z —tr(BY) = 207 + A 2057 + A.%05°
Iy = det(B) = A, *A,%A3% = J?

For nearly incompressible materials, a more convenient set of invariants of B could be used, since the

deviatoric (W4) and the volumetric (Wy) terms of the strain energy function are split. As a result, Wy is the



strain energy necessary to change the shape and Wy is the strain energy necessary to change the volume,

so under a pure volume change, I; and I, remain constant.

I; = Jdet(B) = 1

Therefore, the stress-strain law for an isotropic hyperelastic material could be derived from the strain
energy density function considering an energy balance equation in the same way as in the initial example
of the elastic bar [8,10]. The results are derived below [10]:
e Strain energy density in terms of I}, 1, I3
2 /90U au au au
0y = \/—1_3 [(0_11 +1 0_12) B — a—IZBikBkj] + 2\/Ea—135ij

*  Strain energy density in terms of T_l, I,]
_2[1 (00 o0\, (.90 0U\&, 19U | ol
70 =7 lm\ar * ar ) P~ \har 2R )3 T e PP | %

The present work takes into account different rheological models, which could be classified accordingly to
the form of the strain energy function. Most of the hyperelastic constitutive models can be grouped in
two broad categories: phenomenological and micromechanical models, see Figure 5. Since the physical
significance of micro-mechanical material constants is often unclear, the use of phenomenological model

is suggested.



Hyperelastic Rheological Models

Phenomenological models Micro-mechanical models Marlow

material constants
generated by
specific material

defined by stress-strain data from
a test in a single mode of
deformation (uniaxial tension)

material constants
generated by curve

fitting

tests

Polynomial (N) Odgen (N=3) Arruda-Boyce Van der Waals

Neo-Hookean Mooney-Rivlin Yeoh (N=3)

Figure 5 - Hyperelastic Rheological models

A general form of a strain energy density function, implemented not only in ABAQUS but also in
most of the finite element software’s is the polynomial form, given by the following series expansion (Cj;
are unknown constants):

N N 1
U= Z C;(I, =3I, —3) + Zﬁgel - 1%
i+j=1 =1 !
The sum is formally written as a sum to infinity but, usually, only a few terms are considered:

U= Co(l; —3) + Coy (I; = 3) + Coo(I; = 3)* + C;1(I; — 3)Uy — 3) + Cop(I; = 3)% + C50(I; — 3)?
ol
+ Cp (I, — 3)2(I; — 3) + Ci, (I = Uy — 3)2 + Cos (I — 3)*+... + ZEU“ -
i=1 '

Regardless of the value of N, the initial shear modulus (u,) and the initial bulk modulus (k)

depend only on the polynomial coefficients of the first order (N=1).
to = 2(Cyo + Co1)
2

ko= —
0 Dl

* Neo-Hookean
Taking only the first term in the series yields to the neo-Hooke form, which was first derived from

statistical mechanics by considering the molecular structure of rubbers. [3,19]

_ 1
U= Cpolh =3)+—(*-1)?
Dy



*  Mooney-Rivlin

If only the linear terms in the deviatoric strain energy are retained (N=1), the Mooney-Rivlin is obtained:
_ _ 1
U= Cyo(I; —3) + Cpy (I, — 3) + D—(]el - 1)2
1

The Mooney-Rivlin form can be viewed as an extension of the Neo-Hookean form, where a term that
depends on the second invariant of the left Cauchy-Green tensor is added.

* Yeoh
By setting specific coefficients to zero, particular forms of the polynomial function could be obtained. The
reduced polynomial form is obtained if all C;; with j # 0 are set to zero. The Yeoh form is a special case of

the reduced polynomial with N=3 and it depends only on the first strain invariant.
_ _ _ 1 1 1
U= Co(l; —3) + Cyo(I; —3)? + C50(I; —3)3 + D—U” -1)% + D—(]el -D*+ D—(]el - 1)°
1 2 3

¢ Odgen
The Ogden model expresses the strain energy function in terms of principal stretches and it cannot be

compared with the polynomial form, except for a specific choice of constants.

N N
2Ui r-:  mai —a 1 .
U= LA+ A 425 -3)+ Y (= 1)
e (; (i D;
i=1 =1
For N=1 and a; = 2 the Neo-Hook model is obtained and for N=2, «; = 2 and a, = 2 the Mooney-Rivlin
model is obtained. The initial bulk modulus, k,, depends on D; as before and the initial shear modulus,
Lo, depends on all coefficients: pg = XN, p;.

* Arruda-Boyce

The Arruda-Boyce potential depends only on the first invariant and itis based on statistical mechanics.

1 _ ) 11 _ 19 i}
U= {—1—3 -9 +—P -2 +——(}-81 —15—243}
g h =3+ 500, Ui =9+ 1o507, Ui~ 27 F 75007, (1 78D+ g7z7s0ms, U )
1(J3 -1
+B< ¢ 2 - ln(]el))

The material coefficients have physical meaning, u is the initial shear modulus, A, is the locking stretch,
which is the stretch at which stress starts to increase without limit and D=2/K, is the incompressibility
parameter. If A, tends to infinite, the Arruda-Boyce form becomes the Neo-Hookean form.

* Van der Waals

The Van der Waals potential, also known as the Kilian model, has the following form:

3
2 =-3\z| 1(]53-1
U= p) =08 - Dl —n) +n] - za () +5<]”2 —ln(/el))

In contrast to the Arruda-Boyce model the mathematical structure of the Van der Waals potential is such
that the strain energy tends to infinity as the locking stretch is reached. Thus, stretches larger than the

locking stretch cannot be used in the Van der Waals potential.

10



*  Marlow
The form of the Marlow strain energy potential is:

U= Udev(l_l) + Uvol(]el)

According to Abaqus [3], the deviatoric part of the potential is defined by providing either uniaxial,
equibiaxial, or planar test data, while the volumetric part is defined by providing the respective lateral

strains data, or by giving data from a volumetric test, or by defining a Poisson's ratio.

5.1.Uniaxial tension test

A 3D model of the dumbbell shaped specimen was created. The boundary conditions imposed to the
FEM model were encastrate on the lower and widest part and, at the top of the specimen, a load was
applied in the surfaces which are in contact with the upper claw of the testing machine. A minimum of 3
elements through the thickness was considered.

In the stretching simulation, since the use of “hybrid” (mixed formulation) elements is recommended
in both incompressible and almost incompressible cases, 8-node linear brick hybrid elements (C3D8H)
were used to mesh the 3D-model.

The displacement and strain values along the axial direction in the central section of specimen were

compared with the experimental data.

Figure 6 — Uniaxial tension model
Stress-strain data from experimental results were imported into Abaqus and the numerical fitting
was performed considering several strain energy functions implemented in that finite element package.
Since only uniaxial test data were available, a Poisson coefficient of 0.3 was considered. Table 3 lists the

coefficients obtained from the fitting procedure.
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Cio 7,22563419
Neo Hooke D, 0,063875149
(o 0
Cio 9,25161515
Cyo -47,6971078
Yeoh Cyo 232,349435
D, 0,049887339
D, 0
D, 0
Cio -15,3353613
Mooney-Rivlin Cor 24,7136111
D, 0,04921371
Cio -176,118162
Cor 188,670357
Cyo 8488,60299
Polynomial (N=2) C -20045,3507
Co 11998,9902
D, 0,036769541
D, 0
1 -388,179675
o -3,83103856
nl 195,117036
o, -3,73751909
Odgen (N=3) s 215,416295
o -5,97308164
D, 0,041294225
D, 0
D, 0
n 14,4512525
Arruda-Boyce A 572,257168
D 0,063875102
Lo 14,4512789
n 19,5169585
A 9,94927816
Van der Waals a 2,31878865
BETA 0
D 0,092778281

Table 3 - Coefficients obtained for each strain energy potential through the fitting procedure

When calibrated with uniaxial tension data, the fitting for small and large strains of the Mooney-

Rivlin, the Polynomial (N= 2), the Odgen and the Van der Waals material models is very satisfactory.

12



Nominal Stress (MPa)

Nominal Stress (MPa)

6 "
— 5 b
©
[-%
247
w
7]
239
=1
w
- g 21 Experimental Data
Experimental Data g Mooney Rivlin
Neo Hooke Z° 11 Polynomial (N=2)
Yeoh —=Q0dgen
T T T v 0 T T T '
5 10 15 20 0 5 10 15 20
Nominal Strain (%) Nominal Strain (%)
(a) (b)

Figure 7 — Numerical Fitting for the (a) reduced polynomial (b) polynomial and Odgen strain energy functions
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Figure 8 - Numerical Fitting for the (a) Arruda-Boyce, Van der Waals and (b) Marlow strain energy functions

Results and Discussion

After the numerical fitting procedure and using the coefficients obtained, a FEA was prepared.

The results show that with the Mooney-Rivlin, the Polynomial (N= 2), the Odgen and also with the Van der

Waals material models the agreement between numerical and experimental is very satisfactory.
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Figure 9 —Neo-Hooke model
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Figure 15 — Van der Waals model

Note: For the Marlow model, numerical convergence was not achieved.

The Poisson coefficient used was calculated according to the exposed in the ASTM 638, based on

a relation between the transversal and longitudinal strains at low strains. However, as these types of

materials are often considered incompressible or nearly so, the models were re-calculated with the

assumption of no volumetric change (v=0,5). All of the coefficients calculated from the fitting procedure

are same, except for the volumetric terms. In this case, all of these values (D;) were set to 0.
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Figure 16 —Neo-Hooke model
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As it was considered an incompressible material, the nominal stress - nominal strain curve obtained in the

experimental tests can be converted to a true stress - true strain curve using the following expressions:

a

€

S(1+e)
In(1+e)

where o : true stress

S : Engineering Stress
€ : true strain
e : Engineering Strain
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Figure 24 — True Stress vs True Strain results (a) Neo-Hook model (b) Yeoh model
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Figure 25 - True Stress vs True Strain results (a) Mooney-Rivlin model (b) Polynomial (N=2) model
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Figure 26 — True Stress vs True Strain results (a) Odgen model (b) Arruda-Boyce model

18



~

© i
- 5
v 4 73
3 w
e b4
= -
e 3 - -
24 v
g 2 9 ——\an Der Waals g
— —TS1 =
= =
—T G2
1 1 S2
— s
0 T o
0 5 15 20

10
True Strain (%)

(a)

—Marlow
——TS1
s——2
—Ts3

0

5 10
True Strain (%)

(b)

Figure 27 - True Stress vs True Strain results (a) Van der Waals model (b) Marlow model

15 20

Considering a Poisson coefficient of 0,5, there is also a good agreement between the numerical models

and the experimental data especially for the following models: Mooney-Rivlin, Polynomial (N= 2), Odgen,

Van der Waals and Marlow. However, compared with the previous case, the models are a little bit stiffer.

For the ultimate load, the displacement is getting far from the registered experimentally.

Because of this uncertainty about the Poisson coefficient, based on the values obtained from electric

strain gauges placed in the test specimens, a relation between the axial strains and the load were

explored.

Polsson Coefficient

Load (kN)

It is noticed that the transversal and longitudinal relation is not constant, and when the axial strain limit of

the strain gauges was reached, the Poisson coefficient tend to be approximately 0,16. Due to this fact,

new calculations were performed considering new volumetric terms:

Neo-Hooke D, 0,121693172
D, 0,095043982
Yeoh D, 0
D3 0
Mooney-Rivlin D, 0,093760602
. D, 0,070052316
Polynomial (N=2)
D, 0
D, 0,078672619
Odgen (N=3) D, 0
Ds 0
Arruda-Boyce D 0,121693083
Van der Waals D 0,176758621
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Load (kN)

Load (kN)

Load (kN)

Load (kN)
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0,1
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0,2

0,15

0,1

0,05

0,25

0,2

0,25

0,2

0,15

0,1

0,05

Table 4 - New volumetric terms considered
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Figure 30 — Mooney-Rivlin model
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Figure 31 — Polynomial (N=2) model
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Figure 32 — Odgen model
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Figure 33 — Arruda-Boyce model

Note: For the Van der Waals and for the Marlow model numerical convergence was not achieved.

The results show that considering a Poisson Coefficient of 0.16, the models are more flexible and the ones
that best fit the experimental data are, by order:

1. The polynomial (N=2);

2. The Odgen;

3. The Mooney-Rivlin;

4. Yeoh;
However, despite of the agreement to the experimental curves is not as good as when a Poisson
coefficient of 0.3 is chosen, the ultimate displacement verified is very similar to experimental recorded.
This could mean that the ASTM 638 recommendation to evaluate the Poisson coefficient might not be so
correct for this particular material. So, in order to overcome this uncertainty, additional experimental
tests should be made in order to characterize the volumetric parameters of the adhesive.
The following step was to apply the calibrated properties of these models to a different kind of solicitation

(shear) and evaluate if they suitable or not to represent the behaviour of the adhesive layer.
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5.2.Tension + shear

This numerical model tries to simulate a push-out shear test done on two test specimens. The objective is

to evaluate if the constitutive laws considered in the uniaxial tension models are still suitable in a shear
plus tension load case.

Layout and geometry

Seel

m
[
400
o
~—

A 0152

\

L E wL Lamenated float glass
~L. 10+1.52 +10

Figure 34 - test specimen geometry

Figure 35 - layout

* Properties

Different strain energy potentials were applied to the adhesive layer in order to see which one fits the

best the experimental data. The properties used to model the other elements could be consulted in the
following table.

Element Elasticity Modulus | Poisson Coefficient
Float Glass 70 000 MPa 0.23
SentryGlas Plus 300 MPa ~0.5
Steel 210 000 MPa 0.3

Table 5 - Properties considered in FEM

Boundary Conditions

The boundary conditions considered were fixed at the bottom of the glass. Transversal displacements

were also restrained according to the test setup, see Figure 36.
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Figure 36 - FEM: Boundary Conditions

* Load Strategy
In order to represent exactly the experiment, the load was applied in two steps:
1) Bolt loads are applied vertically at the top of the glass against a steel bar, which will help the
system to restrain the glass. Therefore, in the following step, a relative displacement in the
adhesive layer might happen;
2) After the bolt loads are applied, the steel bar position is fixed in the model and the vertical

load, F is applied at the top of the steel part;

Figure 37 - FEM: Load steps

* Interactions
To model the interactions between the elements, a tie constraint was considered. In the contact pairs, the
adhesive was always the slave surface because it has got the densest mesh and the other materials are
stiffer.

* Mesh
In the adhesive layer, C3DH8 elements were considered. The joint has 4 elements in the thickness and 30
through the height of the connection. To the remaining materials, C3D8 elements were implemented with

an element size of approximately 5mm.
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(a) - perspective

* Results

(b) top view
Figure 38 - FEM: Mesh of the adhesive layer

(c) front view

Note: The Van der Waals and the Marlow model did not achieve numerical convergence.

At the end of the first step, the numerical stress in the glass was compared with the strain gauges

values.
TS1 TS2
Experimental Numerical Experimental Numerical
s11(MPa) 0,3997 0,149507 0,222029
22 (MPa) -1,7997 -1,79804 -2,6643
Load (kN) - -2,22 -3,29

The numerical bolt loads applied at the top of the glass were causing almost the same stress state

registered in the experiment. Because of that, it was decided to go to the next step.

The results, in terms of load vs displacement and shear stress vs shear strain are presented in the

following figures considering a Poisson Coefficient of 0.3 and 0.16, respectively. In both cases, the

agreement between the numerical output and experimental data is very bad. Despite the fact of the

models with a smaller Poisson coefficient have showed a more flexible behaviour, the deformation shape

is far from the observed. The Polynomial and the Mooney-Rivlin models, which used to have a good

agreement between the numerical and the experimental data, have completely changed their form.
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Figure 39 — Numerical vs Experimental results. Poisson Coefficient of 0.3;
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Figure 40 — Numerical vs Experimental results. Poisson Coefficient of 0.16;

Figure 41 - FEM: deformed view (vertical scale x10)

5.3.Simple shear

The following numerical model attempts to simulate a simple shear test. The objective is to evaluate
if the constitutive laws obtained through the calibration of the uniaxial tension models are still suitable in

a shear state.
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Figure 42 — Geometry and—layout
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ral View

The different strain energy potentials obtained through the calibration of the uniaxial tension models

were again applied to the adhesive layer in order to see which one fits the best the experimental data.

The other properties considered in the FEM are the same from the previous model.

Boundary Conditions

In order to simulate the lower claw of the testing machine, the displacements in the 3 directions were

restrained in the lower steel plate. Since the prototype is symmetrical, in order to save computational

time, symmetry conditions were applied relatively to the vertical axis.

Load Strategy

Figure 43 - FEM: Boundary Conditions
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Using a coupling constraint, the vertical load was applied on the steel area corresponding to the upper

claw of the testing machine.

»
s RP-1

Figure 44 - FEM: Load steps

* Interactions
The interactions were modelled considering tie constraints. Due to the same reason as the previous
model, the adhesive were always considered as the slave surface.
* Mesh
Adhesive layer:
-C3DHS8 elements;
-Thickness: 4 elements;
-Height: 20 elements;
Remaining materials:
-C3D8 elements

-Element size of approximately 5mm.

Figure 45 - FEM: Mesh adopted

* Results

Note: The Mooney-Rivlin, the Van der Waals and the Marlow model did not achieve numerical

convergence so their results will not be presented.
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The results, in terms of load vs displacement are presented in the following figures considering a

Poisson Coefficient of 0.3 and 0.16, respectively. In both cases, the agreement between the numerical

output and experimental data is again very bad.
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Load (kN)
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Figure 46 — Numerical vs Experimental results. Poisson Coefficient of 0.3;
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Figure 47 — Numerical vs Experimental results.

Figure 48 - FEM: deformed view (vertical scale x10)
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Poisson Coefficient of 0.16;
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6. Conclusions

The major conclusions are:

1.

More experimental tests will have to be made in order to achieve a good characterization of the
adhesive behaviour. A volumetric test or equivalent, able to evaluate without uncertainties the
Poisson coefficient, is recommended.

Despite the uncertainties regarding the volumetric terms of the adhesive, the FEA on the uniaxial
tension models showed that, with the material coefficients obtained through the fitting procedure of
uniaxial test data, it is possible to simulate the corresponding tests with a reasonable agreement.
However, when the calibrated constitutive laws for uniaxial tension were applied on an adhesive
layer subjected to shear and tension and also simple shear, the numerical output showed a very bad
correlation with the test results. The reason to this could be the fact that the adhesive is now on a
completely different and new type of stress state: shear. To overcome this problem, it is suggested
the realization of future small-scale tests, like a planar test (pure shear). Having information about
the shear behaviour of the adhesive, in addition to the uniaxial test data, a new calibration process

will be able to accurately model the current hyperelastic material under multi-axial states of stress.

7. Outcomes

During the STSM, experimental and numerical results have been carefully analysed, interpreted and

compared.

The work that has been done during the STSM will be continued and finalized in the weeks following the

STSM.

The final aim is to collect all these comparisons in a common journal paper (partly drafted), which will be

submitted to peer-reviewed journals, as well as in Conference papers. The researchers involved in this

STSM feel confident that the STSM visit has contributed to a solid collaborative link between the two

research institutions. In this context, the support of the COST Action TU1403 in facilitating this STSM is

gratefully acknowledged.
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